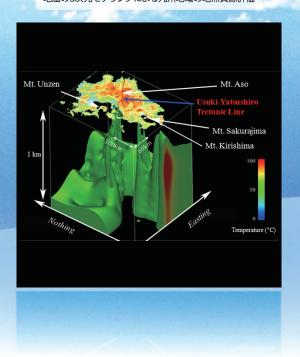
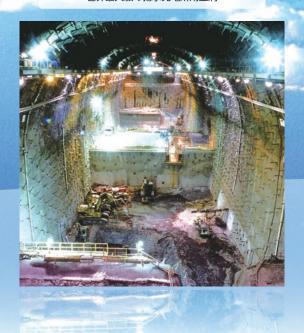


京都大学工学部 地球工学科




資源工学は新しい資源エネル

今ある資源エネルギーをより有効に取り出すことはもちろん、海洋資源エネ 活用が不可欠です。これら未来のエネルギーに挑戦するのが資源工学です。

地温の3次元モデリングによる九州地域の地熱資源評価

世界最大級の揚水発電所用空洞

資源工学は人々のくらしと産業の土台を支える [基幹]工学です

人間は、その歴史の中で、石、土、金属などを地球から探し出して材料やものを作り、石油、石炭、水力、ウランなどをエネルギーとして活動を続けてきました。これら人々のくらしや産業の土台となる資源エネルギーを供給する技術を開発するのが資源工学です。

資源工学は人類の持続的発展を担う「調和」工学です

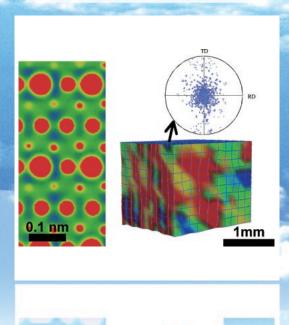
今や人類は、大量生産、大量消費によって、資源エネルギーの枯渇や環境破壊という自らの存亡にかかわる問題に直面しています。この答えを地球と人間の調和から考え出すのが資源工学です。

資源工学は地球の恩恵を大切にする「総合」工学です

省資源、省エネルギーに徹し、物を長持ちさせ、再利用やリサイクルすることで、地球に負担をかけないことが必要です。地球環境をまもり、資源エネルギーを大切に使う知恵を総合的に考えるのが資源工学です。

資源工学は新しい地球空間の利用を考える「創造」工学です

地上はもとより、海洋、地下などこれまで人類が利用していなかったフロンティアを安全に開発することが望まれています。このような新しい地球空間を創造するのが資源工学です。


ギーに挑戦する「未来」工学です。

ルギー、地熱エネルギー、宇宙資源エネルギーなど新しい資源エネルギーの

軽量化金属材料のマルチスケールシミュレーション

資源工学コースの構成

工学研究科・社会基盤工学専攻(桂キャンパス)

資源工学 講座

- 応用地球物理学分野
- 地殼開発工学分野
- 計測評価工学分野

工学研究科・都市社会工学専攻(桂キャンパス)

地球資源学 講座

- 地球資源システム分野
- 地殻環境工学分野

エネルギー科学研究科・エネルギー応用科学専攻(吉田キャンパス)

資源エネルギー学 講座

- 資源エネルギーシステム学分野
- 資源エネルギープロセス学分野
- ミネラルプロセシング分野

卒業生からのメッセージ

生活の根幹にある資源・エネルギーの問題に取り組みたいという 漠然とした思いが、私が資源工学コースに進んだきっかけです。原 子から地殻までの様々なスケールの内容を、座学・実験・フィール ド実習等の色々な形式で学ぶ、バラエティに富んだカリキュラムが 資源工学コースには用意されています。当時の私のように取り組 みたいことをまだ見つけられていない方は多彩な講義を通して じっくりと進路を考えることができますし、既に見つけられている 方がその内容をとことん深堀りできる環境も整っています。

私は現在、エネルギーの安定供給を目的とした油ガス田の開発計画策定や、ネットゼロカーボン社会の実現を目指したCarbon Capture and Storage(CCS)の検討に取り組んでいます。いずれにおいても地下で生じる様々な現象を理解する必要があり、幅広い知識が求められますが、資源工学コースで学んだ多種多様な講義内容はその業務に生かされていると感じます。

今後どのように資源・エネルギーを利用していくべきか、今まさに問われています。多角的な検討が必要な難しい分野ですが、その分やりがいのある分野だと思います。資源工学コースで様々な内容を学びながら、是非一緒に考えてみませんか。

株式会社INPEX 国内E&P事業本部 杉山俊平

応用地球物理学分野

Geophysics

「地下を診る目」を創るセンシング・テクノロジー

エネルギー資源開発や地球環境保全など地球に関する諸問題の解決には, 地殻構造を探る手段を有する「地下のドクター」の存在が必要不可欠です. 本研究室では, 地震波や電気, 電磁気などの物理現象を用い, 地下状態を非破壊で探査する物理探査技術を中心に, 波動伝播や物性現象に関する基礎科学を含めた教育と研究を行っています。

研究概要

全波形逆解析手法を用いた地下の 高精度可視化技術の開発

近年,地下を高精度で可視化するための技術として,全波形 逆解析手法が注目を集めています。得られた地震波形情報 全てを用いて地下速度構造を推定する手法であり,高分解 能な結果が得られることが期待されています。一方,ノイズ の影響などにより逆解析結果が局所解に陥るなどの問題が 指摘されており,本格的な実用化に向けてはまだ問題点が 残っている状況です。本研究では、ノイズを含むデータに対しても、頑健な結果が得られる手法を提案し、全波形逆解析手法の実用化に向けた取り組みをおこなっています。

トンネル切羽前方探査に対する 全波形逆解析手法の適用

トンネルを建設する際,切羽前方の地山状況をあらかじめ予測しておくことは,安全かつ効率的な施工をする上で重要です。トンネル切羽前方探査では地震探査が利用されますが,発振・受振器設置位置がトンネル坑内に限られているため,切羽前方のイメージング精度は決して十分とは言えませんでした。本研究では,トンネル切羽前方探査に全波形逆解析手法を適用することで,切羽前方の地山状況をより高精度に把握する手法について研究しています。

表面波探査による土のう路盤の 強度推定法の研究

発展途上国での道路整備や災害復旧時において、土のうによる道路の整備方法が注目を集めています。土のうを用いることで、現地で材料を調達できることや施工に高度な機器を必要としないなどのメリットがあります。一方、敷設された土のう路盤の強度は施工時の締固めにより大きく異なるため、丁寧な施工が必要であるとされています。本研究では、敷設後の土のう路盤の強度を非破壊で推定するため、表面波探査を用いた土のう路盤の強度推定の適用可能性について検討しています。。

CO2ハイドレートによる二酸化炭素の地中貯留 と全波形逆解析手法によるモニタリング

地球環境問題への関心の高まりから、二酸化炭素を地中に 貯留するCCS (Carbon Capture and Storage) 技術が注 目を集めています。現在、様々な貯留形態が提案されており ますが、本研究では二酸化炭素をハイドレート状にして海底 下に貯留する技術について検討しています。海底下に二酸化 炭素を圧入する場合、二酸化炭素がどのような形態でどのように分布しているかを把握する必要があります。本研究では、 これを高精度にモニタリングするために全波形逆解析手法 を適用することを検討しています。

光ファイバを用いた地震動計測のための センサー開発

本研究では、光ファイバを用いた地震動の計測技術について研究をおこなっています。光ファイバで地震動を取得することで、高密度な受振記録を安価に取得できる可能性が指摘されています。一方、この方法では光ファイバ軸方向にしか感度が無いため、1成分受振器としてしか使えません。そこで、様々な方向から来る地震波に対して感度を持たせることを目的として、光ファイバを用いたセンサーを新たに開発しています。下図はその一例です。また、取得されたひずみデータから地下を可視化するための物理探査技術についても検討しています。

新たに開発したセンサー

地殼開発工学分野

Earth Crust Engineering

准教授:奈良 禎太 准教授:保田 尚俊 Assoc. Prof.: Yoshitaka Nara Assoc. Prof.: Naotoshi Yasuda

人類の持続的発展を支える地殻開発工学

資源・エネルギー開発や地下空間の有効利用等に代表される岩盤の利用は,人類・社会の将来的な発展において極めて重要です。安全な岩盤の利用のためには,岩盤力学に関する知見が必要不可欠です。本研究室では,岩盤力学に関する知見を基に,人類・社会の持続的発展に欠かせない資源・エネルギー開発やその技術,岩盤構造物の安定性,周辺環境が岩石物性や破壊特性に及ぼす影響等に関する研究を行っています。特に,鉱物・エネルギー資源の開発,放射性廃棄物処分における安全確保,地下岩盤を利用した二酸化炭素の貯留・固定技術による地球温暖化抑制,地下空間利用による都市の発展や社会インフラの整備に関する研究等,様々な形で人類・社会に貢献できる研究を行っています。

研究概要

岩石破壊の進行に及ぼす 周辺環境の影響に関する研究

放射性廃棄物の地層処分施設や原油地下備蓄空洞のような地下岩盤構造物には、長期安定性の確保が必要です。また、そのような岩盤構造物の設計では、岩石の長期強度の評価が重要となります。さらに、通常岩石は長い年月を経て風化が生じ、力学的性質(強度や遮蔽性能)が劣化します。したがって、岩石破壊に及ぼす周辺環境の影響を詳細に研究する必要があります。そのためには、緩やかな破壊の進行の計測技術が必要不可欠であり、とくに周辺環境が亀裂進展速度に及ぼす影響を調べることができるシステムを整える必要があります。そこで本研究室では、破壊力学試験法の一つであるダブルトーション試験法を用い、緩やかな速度で起こる亀裂進展について調べています。図1がダブルトーション試験装置、図2が電子顕微鏡を用いて観察された花崗岩の亀裂経路です。これまでに、岩石の亀裂進展と長期強度には水が大きく影響し、水中や相対湿度が高い大気中で亀裂進展速度が上昇し、長期強度が低くなることが明らかになっています。

図1 ダブルトーション試験装置

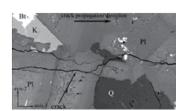


図2 花崗岩の亀裂経路. Nara et al. (2006)から引用. 画像の幅は1.5mm, 高さは0.9mm. (Q: 石英, PI: 斜長石, K: カリ長石, Bt: 黒雲母)

岩盤の亀裂・空隙の閉塞および 透水性に関する研究

透水性に関する情報の取得は、各種岩盤工学に関するプロジェクトを行う上で必須と言えます。岩石内の流体の流れは、亀裂や空隙のネットワークで生じます。ゆえに、岩石内の亀裂や空隙が透水特性に及ぼす影響を調べることは極めて重要といえます。そこで本研究室では、鉱物が岩石内の亀裂や空隙を充填する機構の解明を調査するとともに、室内試験および原位置岩盤における透水試験を行うこと

によって、岩盤の透水特性に関する研究を行っています。

図3に原位置岩盤での透水試験の装置,図4に粘土を含む水が流れる環境下で生じた花崗岩内の亀裂閉塞の様子を示します。これまでに、微細な鉱物粒子が亀裂や空隙内部で累積することで透水係数が低下することが明らかになっています。

図3 原位置透水試験装置

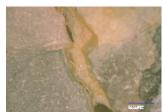


図4 粘土により閉塞した花崗岩の亀裂 画像の幅は0.5mm 高さは0.375mm

湧水圧制御型トンネルの実現に向けた研究

人類・社会の将来的な発展のためには、既存の枠組みにとらわれず、設計や施工の合理化を進めていくことが重要です。地中深くにトンネルのような岩盤構造物をつくる場合、地下水圧がトンネルに作用しないよう排水構造とするのが一般的です。周辺の地下水環境等に配慮する必要がある場合のみ、厚いコンクリートで巻いた非排水構造とします。既存のトンネルは排水型と非排水型の2種類のみですが、周辺環境への影響、維持管理コストを踏まえると、その中間型とした方が良く

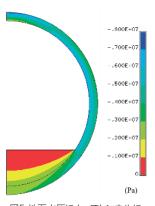


図5 地下水圧によってトンネルに 生じる応力

なる場合も想定されます。そこで、本研究室ではこれまでにない湧水圧制御型トンネルの実現に向けた研究を行っています。図5に数値解析で得られた結果の一部を示します。これまでに行った数値解析の結果から、トンネルと岩盤の間に透水性の高い層を作り、湧水圧を制御するためのバルブのような機構を付け加えることで湧水圧制御型トンネルが実現できることが示唆されています。

計測評価工学分野

Measurement and Evaluation Technology

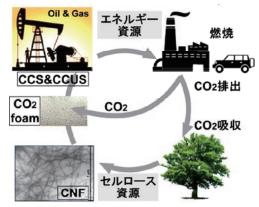
教授:村田 澄彦 助教:小林 和弥

Prof.: Sumihiko Murata Asst. Prof.: Kazuya Kobayashi

岩石内界面現象の理解に基づく環境調和型資源開発技術とガス地下貯留の効率化技術の開発

本分野では、各種計測評価技術に基づいた、資源開発における環境負荷低減技術、気候変動問題に対応するCCS/CCUSの高度化技術、岩石内での界面現象の解明と資源開発への応用などに関する研究開発を行っています。

研究概要

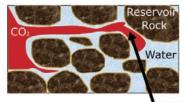

環境調和型資源開発技術

環境調和型石油天然ガス開発技術の開発

現在の石油の回収率は高々40~60%であり、まだ多くの石油が 既存油田に残されています。石油を資源として末永く使用してい くためには、地球温暖化にも配慮した環境調和型の石油増進回 収法(EOR)の開発が必要です。また、近年活発化しているシェー ルガス、シェールオイル開発では、フラッキングに大量の水を使 用することやフローバックする有害な水処理が環境問題となって おり、出来る限り使用する水の量を削減することが必要です。

当研究室では、豊富な木質資源を原料とし、生分解性で環境負荷が低いセルロースナノファイバー(CNF)を用いた石油天然ガス開発技術の開発を行っています。一つは、CNFをナノ粒子化して石油貯留層の卓越流路に送り込むことで卓越流路の浸透率を低下させEOR流体による油の掃攻効率を向上させ、石油の回収率を上げる技術です。もう一つは、CNFを用いて安定な泡状炭酸ガスを生成し、それぞれ炭酸ガスEORおよびシェールガス、シェールオイル開発でのフラッキング流体に用いることで、CCS/CCUSとしての役割も持たせながら、炭酸ガスEORの掃攻効率を向上させるとともにフラッキングで使用する水の量を大幅に減らし、水環境への影響を低減する技術です。

下図に示すように、生産された石油・天然ガスの燃焼で排出された炭酸ガスは植物に吸収され、新たなセルロースとして再生されCNFが生産されます。このように、本研究はカーボンニュートラルな技術の開発でもあります。


CNF含有フォームによる石油天然ガス開発のカーボンニュートラル化

ガス地下貯留の効率化技術

CO2粘性向上による効率的な地下貯留技術の開発

CO2は地中で他の流体よりも低い粘性と密度を持つため、重力の影響で地中の上部や卓越流路を選択的に流れます。CCSでは、地中に均一に貯留されないため効率が悪くなります。当研究室ではCO2に薬剤を添加する、あるいはCO2を泡状にして圧入することで粘性を向上させ、効率的な地下貯留技術の開発に取り組んでいます。

在来型のCO 圧入

不安定な掃攻フロント

增粘CO2圧入

安定した掃攻フロント

CO2の粘性向上による掃攻効率の改善

岩石内での界面現象の解明と応用

鉱物表面に対する油分子吸脱着機構の解明

石油・天然ガスの効率的な回収やCCS/CCUSには、岩石の孔隙内で起こる流動を理解し効率化する必要があります。鉱物、塩水、石油・天然ガス、二酸化炭素間の界面で起こる相互作用は、この流動に大きな影響を与えます。本研究では、EOR流体を地下に圧入した際に起こる油分子の吸脱着現象を分子レベルの解像度を持つツールを用いて解明し、より効率的なEORに資する研究を行っています。

地球資源システム分野

Earth and Resource System

教授:林 為人 講師:石塚 師也 助教:神谷 奈々 Prof.: Weiren Lin Lecturer: Kazuya Ishitsuka Asst. Prof.: Nana Kamiya

資源エネルギーの開発と断層運動の解明のために、 地殻の特性を紐解く

石油・天然ガスや地熱などの地下エネルギー資源を開発する地球工学分野から、科学掘削における地下応力状態の 測定による沈み込み帯の断層運動を解明する地球科学分野まで、"地球"、"資源"、"エネルギー"、"断層"、"環境"などをキーワードに、手法・ターゲットともに幅広く研究を行っている。

研究概要

地震断層掘削や石油坑井における三次元原位置応力状態の解明

南海トラフなどの海底にあるプレート境界や陸上の活断層の活動により、大地震が繰り返し発生している。地震発生のサイクルにおいては、応力が次の地震発生までに震源断層とその周辺に蓄積し、地震時に急激に解放するとされているが、応力と地震の定量的な関係は、いまだに解明されていない。一方、石油・天然ガス等の地下エネルギー資源を開発する坑井においては、坑壁安定性の確保や水圧破砕で造成するフラクチャーの方向制御のために、深部地層中の応力状態に関する情報を知ることが不可欠である。

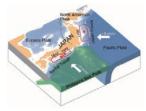


図1 日本列島およびその周辺のプレート構造(左)と世界最高の 掘削能力を誇る深海科学掘削船『ちきゅう』(右)

当研究室では地震断層掘削や石油開発の坑井から得られるコア試料や検層データを用いて,地下深部内の三次元応力状態の時空間分布特性を明らかにすることにより,地球科学・地球工学の発展に貢献することを目指している。

図2 応力計測に用いた 岩石コア試料

岩石の物理的性質の評価

地球資源の探査や開発、断層運動の解明において、岩石の物理的特性の理解は必要不可欠である。特に掘削の岩石コア試料や坑井の検層データを用いた評価は、対象地層の熱物性や比抵抗、弾性波速度といった岩石物性を直接的に理解する最重要な手段である。そのため、当研究室では、岩石コア試料や検層データを用いた物理的特性の評価を通じて、対象地域の地質的および地球物理学的特性の解明を行っている。

具体的な研究例としては、熱物性や圧密降伏応力など岩石物性の異方性に着目した物性測定を行い、応力と物性変化の関係を解明することで、地下深部における物理特性のより正確な評価を目指している。また、2016年熊本地震を引き起こした布田川断層を貫通した掘削孔を用いて、温度や熱物性、比抵抗特性等の評価に取り組んでいる。

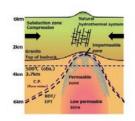


図3 岩石試料のサンプリングの様子(左)、圧密試験機(右)

地熱資源評価のための温度・物性分布推定

地下深部に存在している高温岩体の持つ地熱資源の開発が可能となれば、従来よりも多くのエネルギーを得ることが可能となり、さらには二酸化炭素排出量の削減にも貢献することが可能となる。そのためには、掘削地点の選定のための有望地域における深部地熱資源の定量評価が重要となるが、地質や物理的性質に関する原位置のデータが限られている点、予測される現象に不確実性がある点が課題となっている。

当研究室は、地熱地域で取得された検層データや電磁探査データ、地質学的知見を基に、機械学習や数値計算等を用いて、より信頼性の高い深部地熱資源評価手法の開発を行っている。また、開発した手法は有望地域に適用し、手法の評価を行っている。

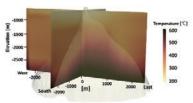


図4 深部地熱システムの概念図(左)、 葛根田地熱地域で推定された温度分布(右)

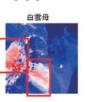
地殼環境工学分野

Environmental Geosphere Engineering

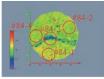
地殻環境評価と鉱物・水・エネルギー資源の時空間モデリング

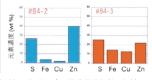
資源と共存し、地球環境と調和した持続的発展社会の構築や地層貯留機能の高度利用などを目的として、地球計測法と数理地質学による鉱物・水・エネルギー資源の分布形態モデリング、地殻ガス・流体の化学的性質と流動現象の解明、地殻の地質・熱・物性の構造推定の高精度化に関する研究を行っています。

研究概要

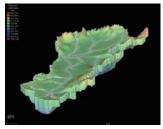

リモートセンシングによる地殻構造と物性の 推定技術の開発

鉱物・エネルギー資源の分布を明らかにするには、地質構造、岩石・鉱物の種類、物性、化学組成、地殻変動パターンなど、広範囲にわたる静的・動的な地質情報が必要となります。そのためにリモートセンシング技術を応用し、資源関連の地質・物性の空間分布を推定する手法の開発を行い、現地調査や他の探査手法と組み合わせることによって表層から深部までの地質構造を明らかにすることを試みています。また、リモートセンシングで用いる分光特性の解析を鉱物分布の画像解析やモデリングに応用する試みも進めています。





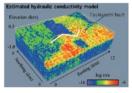
ハイパースペクトル衛星データ (HISUI)を用いたアメリカCuprite地区の鉱物分布推定結果 現地Alunite hillの様子と空機搭載型センサおよび現地測定で確認されている詳細鉱物分布図 (左), HISUI画像を用いた端成分抽出による白雲母 (muscovite) の分布推定結果 (右)


マルチスペクトルカメによるボーリングコアサンプル断面の撮影とバンド比指数分布(左・中央) (XRFによる元素濃度分析結果(右)との比較から、Fe,Cu,Znの含有量に対応していることがわかる)

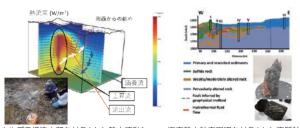
地球化学分析とシミュレーションによる 地殻流体の流動状態の解明

地殻における流体流動現象の理解は、種々の地球資源を利用したり、効果的な環境問題対策を講じたりする上で重要となります。例えば、重要な水資源である地下水の持続的利用のためには、帯水層の空間的広がりや地下水の涵養・流動・流出状態を踏まえた適切な資源管理が必要となります。また、地熱資源を開発し、持続的に利用するためには、地下の熱水や蒸気といった地熱流体の循環状態の把握が求められます。当研究室では、安定同位体、放射性同位体を含む流体の地球化学的指標(環境トレーサー)を駆使するとともに、地球

統計学的手法を活用した水理地質構造のモデル化や,地下水流動と反応輸送,熱輸送に関するシミュレーションを行うことで,地殻流体の流動状態とそれに伴う物質循環,研究対象地域の熱環境を高精度に把握・予測する手法の構築を進めています。


タンザニアの地熱地域における野外調査の模様(左)と 京都盆地の水理地質モデルの鳥瞰図(右)

陸・海域での資源分布形態の高精度モデリング


黒鉱鉱床, 斑岩銅鉱床, 海底熱水鉱床, 地熱資源, 地下水資源 などを対象とし, 地球統計学や機械学習を種々の地質情報や計測データに適用することで, 陸域・海域でのこれらの資源の有望地, 分布形態, 品位分布を明らかにしています。またボーリングコアサンプルの計測結果や薄片観察情報を各種数値シミュレーション, 岩石や流体試料の分析, 地表地質調査, 現地計測調査などを組み合わせることで, 資源の形成要因や生成プロセスの解明にも取り組んでいます。

プローブ型パーミアメーター(左)による浸透率測定結果から求めたボーリングコアサンプルの透水係数と間隙率の比較(中央)および得られた関係式に基づいて推定された広域地下水理構造モデル(右)

カルデラ構造内部を対象とした熱水流動シ ミュレーション結果とインドネシア地熱地域 でのサンプリング作業の様子

海底熱水鉱床周辺を対象とした変質鉱物分布モデルに基づく熱熱流体流動パスの推定結果と海底熱鉱床のサンプル

資源エネルギーシステム学分野

Resources and Energy System Laboratory

新エネルギー・省エネルギー技術に関する革新的研究

当研究室では、材料科学等を基礎として、新エネルギー、省資源・省エネルギーおよび近未来における資源・エネルギーの安定供給に関する幅広い分野の研究を行っています。具体的には、新エネルギー・省エネルギーの促進に貢献する金属系ナノマテリアルや超軽量合金等に関する研究に取り組んでいます。研究室のキーワードは、エネルギー・資源問題解決に向けた革新的技術開発とそれに挑戦する意欲、です。

For details, please visit our website: http://www.res.energy.kyoto-u.ac.jp/ !!

研究概要

ナノ複合・ナノポーラス金属に関する研究

本研究室では、近年注目を集めているカーボンナノチューブを使った"金属/カーボンナノコンポジット"、およびナノメートルオーダーの微小孔径を有するスポンジ状の"ナノポーラス金属"の研究を行っています。これらナノ材料は今までのバルク材料とは異なる画期的な材料特性(触媒、磁性、酵素固定、力学等)を示すことを確かめました。これらの研究を通じ、新エネルギーや省資源を促進するブレイクスルーを目指しています。

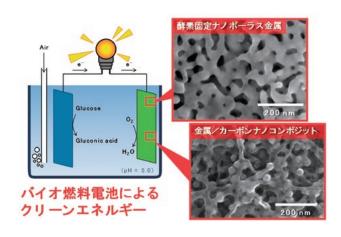


図1 クリーンエネルギーを提供するバイオ燃料電池に向けた ナノ金属電極の開発

超軽量マグネシウム合金の開発に関する研究

マグネシウム (Mg) 合金は、超軽量な次世代基盤材料として 期待される材料ですが、最密六方格子構造をとることから加 工性が著しく悪く、実用化の大きな障害となっています。本 研究室では、コンピュータ解析による最適電子構造設計を基 に、加工性に優れたMg合金の開発を行い、成果を上げてい ます。

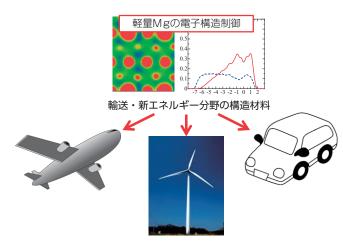


図2 高加工性Mg合金の開発から省エネルギー社会へ

めっき接合の研究

接合は製造分野のあらゆる場面で用いられる重要な基盤技術です。本研究室では、これまで表面処理技術として長く発展してきた「めっき」(電解析出、電析)を接合技術に転用する「めっき接合」を研究しています。めっき金属特有の高強度を活かして各種金属材料(アルミニウム合金など)や新素材(炭素繊維強化プラスチックなど)を接合することで、製造分野における軽量化・省エネルギー化・マルチマテリアル化などの要請に応えることを目指しています。

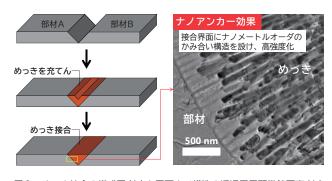


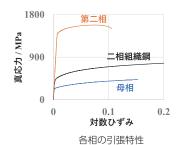
図 3 めっき接合の模式図 (左) と界面ナノ構造の透過電子顕微鏡写真 (右)

『源エネルギープロセス学分野

Advanced Processing of Resources and Energy

教授: 浜 孝之 Prof.: Takayuki Hama 助教:宮澤 直己

Asst. Prof.: Naoki Miyazawa


マルチスケール計算力学の応用による省資源化、省エネルギー化への貢献

持続可能な社会の構築には、素材から製品を加工、利用するまでの一連のプロセスにおいて省資源化、省エネルギー化を促進す ることが重要です。当研究室では、金属板をはじめとする素材の加工プロセスに焦点を当てて、幅広い時空間スケールを対象とし た高度な計算力学と実験技術を駆使することで、その実現に向けた基礎的、実用的研究に取り組んでいます。その成果は、輸送 機器の軽量化に資する難加工材のモデリングやその成形性の向上、また高い成形性を有する素材の創製などに生かされます。

研究概要

相組織鋼板のマルチスケールモデリング

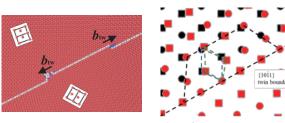
自動車の軽量化には、二相組織鋼板に代表される高強度材 料を使用して部材の薄肉化を図ることが有効な手段である。 しかし、軟質な母相と硬質な第二相から構成される二相組織 鋼では、従来用いられてきた単相鋼とは変形挙動が大きく異 なるため、その変形特性の解明が切望されている。本研究室 では、各相の変形特性を高精度に評価する実験技術を検討 するとともに、複雑な結晶組織を直接モデル化した代表体積 要素を用いることで、変形特性の高精度な予測技術の開発 や変形メカニズムの解明を進めている。


結晶組織を直接モデル化した 代表体積要素

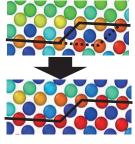
純チタン板のマルチスケールモデリング

工業用純チタンは優れた耐食性や高い比強度を持つことか ら、航空機や自動車部品、熱交換器などで広く用いられてい る。しかしながら六方晶金属であることに起因して極めて異 方性の強い変形挙動を示す。本研究では、純チタンに関する マルチスケール数値解析技術を開発し、その複雑な異方変 形挙動の解明を進めている。最近では実験と数値解析を駆 使することで、円筒カップ絞り成形から粗大結晶粒材の単軸 引張変形に至るまでの幅広いスケールを対象として, その不 均一な塑性変形挙動や異方変形挙動が発現するメカニズム を, 結晶粒レベルの微視変形から明らかにした。

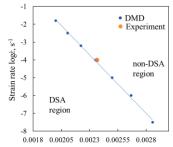
カップ成形性の予測(左:解析,右:実験)



降伏曲面の予測


引張変形時の結晶粒内 ひずみ分布の予測

チタン合金のミクロスケール変形解析


チタンの異方性の強い変形挙動は、結晶構造レベルの微視変 形にも起因している. 本研究室では分子動力学解析を駆使す ることで、チタンの微細組織を原子スケールでモデル化し、微 視的塑性変形機構の解明を進めている。例えばチタンの双晶 変形機構や、それに転位や溶質が及ぼす影響について原子ス ケールから明らかにした. 最近では異方性の強い変形特性との 関係についての調査や結晶塑性との連携を進めている。

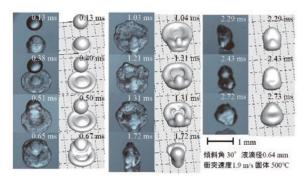
双晶成長のモデリング

双晶変形に伴う 溶質濃度の変化

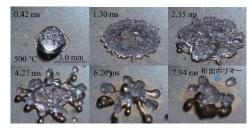
Temperature 1/T, K-1 ひずみ時効の予測

ミネラルプロセシング分野

Mineral Processing


資源・素材・環境に貢献するミネラルプロセシング

人類が今後も安全に暮らしていくためには、地球環境に配慮した素材開発、資源精製・循環プロセス技術の構築、およびそれらの高度化・高効率化が必要です。私たちは、資源・素材さらに環境に関わるさまざまな問題に取り組んでいます。


研究概要

混相流の物質・熱輸送

一つの空間に複数の流体が存在する混相流は, 様々な素材製 造プロセスで現れる。金属素材の冷却による熱処理では,数 百℃に加熱された素材表面に冷媒を接触させて急冷し, 所定の 温度で冷却停止することで結晶組織の制御を行っている,水を 使用する冷却では、沸騰により液体相と蒸気相および周辺の空 気相が混在する流れとなる。また、冷媒が水中に油滴相が分散 するO/W(Oil-in-water)エマルションでは、水の沸騰に加え、 分散相(油)の濃化や相変化が発生する。水溶性高分子ポリマー 水溶液を用いる場合は、ポリマーの析出や熱分解も起こる。これ らは全て, 微小な時空間スケールで発生する過渡現象であり, 素材の冷却速度(単位時間当たりの温度降下量)に大きな影響 を及ぼす。そのため、冷却プロセスの最適化には相変化を伴う 混相流の物質・熱輸送現象の理解が不可欠である。しかし、これ には学術的に未解明なものが数多く残されている。本研究室で は、液体と高温固体との突然接触により誘起される流動の観察 と熱計測手法の開発を行っており、その素過程を基礎実験や3 次元コンピュータシミュレーションで解明する研究に取り組んで いる。

傾斜した高温金属表面に連続衝突する水液滴の挙動(左):観察画像,(右):コンピューターシミュレーション.

高温固体面上のポリマー水溶液液滴の変形過程の例。 析出ポリマーは熱抵抗層として作用し、冷却速度を低減する。

非在来型炭化水素資源の開発

岩石中に存在する間隙や割れ目の状況を明らかにすることは、資源開発を含む多くの工学的課題の解決に貢献する。従来認識が困難であった微小な間隙や割れ目を観察する手法を開発し、この手法を用いて、石油や天然ガスなどの地下資源貯留層の評価や岩石の破壊過程の解析に取り組んでいる。

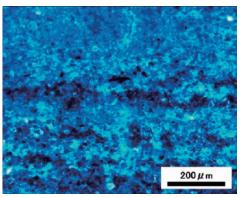
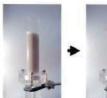
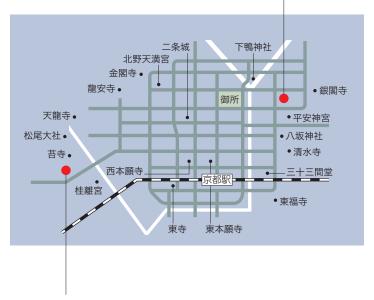



図 シェールガスの貯留岩として注目されているシェール(頁岩)中の 間隙構造の評価(白色部が可視化された微小な間隙)

環境・リサイクリング

近年の環境規制の強化、資源リサイクリング意識の向上などにより、処理の対象物は複雑化かつ微細化の傾向にあり、これを処理する高度な分離技術開発が急務となっている。この問題を解決する一連の研究として、資源の分野で培われてきた省資源・省エネルギー型の分離技術を環境浄化(放射能汚染土壌の除染・減容化、排水浄化、水資源など)あるいは資源リサイクリング(廃棄物資源循環)などの分野に適用し、その機構解明と応用研究をミネラルプロセシングの観点から行っている。



(左)新規分離技術(マイクロバブル浮選)の光景 (右)浮選前後の溶液の様子、左が浮選前

吉田キャンパス

工学部 地球工学科 資源工学コース 大学院エネルギー科学研究科・ エネルギー応用科学専攻

〒606-8501 京都市左京区吉田本町

桂キャンパス

大学院工学研究科・社会基盤工学専攻 大学院工学研究科・都市社会工学専攻 〒615-8540 京都市西京区京都大学桂

京都大学

工学部 地球工学科 資源工学コース

〒606-8501 京都市左京区吉田本町 URL https://www.s-ge.t.kyoto-u.ac.jp/res/ja

2025.6 表紙のうち、海底熱水鉱床の写真: © JAMSTEC